9. Qubitization: Block encodings

Isaac H. Kim (UC Davis)

Recap: Qubitization

(for a polynomial that satisfies the conditions in QSP.)

Qubitization: The gate sequence

$$
e^{i\phi_0'\tilde{Z}}U(H)e^{i\phi_1'\tilde{Z}}\cdots U(H)e^{i\phi_d'\tilde{Z}},
$$

where $\tilde{Z} = Z_a \otimes I_s$ and $U(H) = Z_a \otimes H + X_a \otimes \sqrt{1 - H^2}$.

Unitary Encoding

 $||H|| \leq$

 $U(H) = Z_a \otimes H + X_a \otimes \sqrt{1 - H^2}$ is called as a *unitary encoding* of H .

- 1. $U(H)$ is a unitary.
- 2. Alternatively, we can view it as a block-diagonal matrix:

$$
U(H) = \begin{pmatrix} H & \cdot \\ \cdot & \cdot \end{pmatrix}.
$$

Unitary Encoding Revisited

$$
U(H) | 0 \rangle_{\alpha} | 2 \rangle_{s} = 3 | 0 \rangle_{\alpha} | 2 \rangle_{s} + \sqrt{1 - 3^{2}} | 0 \rangle
$$

orthosor || U || 0 \rangle_{\alpha} | 2 \rangle

So far, we *defined* the unitary encoding of H to be $U(H) = Z_a \otimes H + X_a \otimes \sqrt{1-H^2}$. However, this definition is somewhat restrictive. For instance, this construction demands $\mathit{U}(H)$ to be exactly *H* to be $\underline{U(H)} = \underline{Z_a} \otimes H + \underline{X_a} \otimes \sqrt{1 - H^2}$ *U*(*H*) กั

$$
U(H) = \left(\begin{array}{c|c}\n\hline\nH & \sqrt{I - H^2} \\
\hline\n\sqrt{I - H^2} & -H\n\end{array}\right).
$$

However, in actual application, **we only use the top left corner of the matrix!**

This motivates a more relaxed definition of unitary encoding, defined as

, where 1. The ancilla no longer has to be a single qubit. 2. We can simply avoid defining some of the matrix elements. *U*(*H*)|*G*⟩*^a* |*λ*⟩*^s* = *λ*|*G*⟩*^a* |*λ*⟩*^s* + 1 − *λ*² |*G*[⊥] *^λ* ⟩*as* (⟨*G*| *^a* ⊗ *Is*)|*Gλ*⟩⊥ *as* = 0. e e Fixedstate Previous Gladiola 7dg I ^a ^a some fixedState on K2I 0464

*λ***-subspace**

This motivates a more relaxed definition of unitary encoding, defined as $U(H) |G\rangle_a | \lambda\rangle_s = \lambda |G\rangle_a | \lambda\rangle_s + \sqrt{1 - \lambda^2 |G_\lambda^{\perp}\rangle_{as}}$ where $\left(\bra{G}_a \otimes I_s\right)|G_\lambda\rangle^\perp_{as} = 0.$

Unfortunately, this definition seems to have a problem. Upon applying $U(H)$ twice, we may leave the subspace spanned by $|G_\lambda\rangle=|G\rangle|\lambda\rangle$ and $|G^\perp_\lambda\rangle$. You apply it three times, and potentially more trouble will be waiting us... $|G_{\lambda}\rangle = |G\rangle |\lambda\rangle$ and $|G_{\lambda}^{\perp}\rangle$.

$$
U(h) |G_{\alpha}| \gg \sqrt{-(H) |G_{\alpha}\rangle} + \sqrt{1-\lambda^{2}} |G_{\alpha}\rangle_{M}
$$
\n
$$
U(h)^{2} |G_{\alpha}\rangle = \sqrt{U(h) |G_{\alpha}\rangle} + \sqrt{1-\lambda^{2}} |U(h)| |G_{\alpha}\rangle
$$
\n
$$
U(h)^{2} |G_{\alpha}\rangle = \sqrt{U(h) |G_{\alpha}\rangle} + \sqrt{1-\lambda^{2}} |U(h)| |G_{\alpha}\rangle
$$

$$
\lambda
$$
-subspace λ
\n
$$
\lambda
$$

\n
$$
W(h)_{\text{var}} = \text{V} \quad W(h)_{\text{var}}
$$

\nTo avoid this problem, we need a unitary $W(H)$ such that
\n
$$
W(H) | G\rangle_a | \lambda\rangle_s = \lambda | G\rangle_a | \lambda\rangle_s + \sqrt{1 - \lambda^2} | G_\lambda^{\perp} \rangle_a
$$

\nwhere $(\langle G |_a \otimes I_s \rangle) \overline{G}_\psi \rangle_{as}^{\perp} = 0$. Moreover, we need $W(H)$ to preserve the subspace
\nspanned by $| G_\lambda \rangle = | G \rangle | \lambda\rangle$ and $| G_\lambda^{\perp} \rangle$.
\n
$$
e_f
$$

By unitarity, it suffices to show that $W(H)$ reduces to a 2×2 unitary on that subspace (for each λ). Moreover, while not too important, it will be convenient to make this unitary similar to the $R(\lambda)$ discussed last time.

$$
W(H) |G_{n}\rangle = \frac{1}{2} |G_{n}\rangle + \sqrt{1-2^{2}} |G_{n}\rangle
$$

\n
$$
W(H) |G_{n}\rangle = d |G_{n}\rangle + g |G_{n}\rangle + \sqrt{1-2^{2}} |G_{n}\rangle
$$

\n
$$
W(H) |G_{n}\rangle = \frac{1}{2} |G_{n}\rangle + g |G_{n}\rangle
$$

\n
$$
W(H) = \frac{1}{2} |G_{n}\rangle
$$

Committee State State State State \sim

Matrix elements

Let's recall our toy version of qubitization: $e^{i\phi'_0 \tilde{Z}} U(H) e^{i\phi'_1 \tilde{Z}} \cdots U(H) e^{i\phi'_d \tilde{Z}},$ where $\tilde{Z} = Z_a \otimes I_s$ and $U(H) = Z_a \otimes H + X_a \otimes \sqrt{1 - H^2}$.

In the
$$
\lambda
$$
-subspace, we get a 2 x 2 matrix $R(\lambda) = \begin{pmatrix} \lambda & \sqrt{1-\lambda^2} \\ \sqrt{1-\lambda^2} & -\lambda \end{pmatrix}$.

$$
W_{\lambda}(\theta) = \begin{pmatrix} \lambda & \sqrt{1-\lambda^2} \\ \sqrt{1-\lambda^2} & e^{\lambda \phi} & -\lambda e^{\lambda \phi} \end{pmatrix} \quad \phi \Rightarrow \quad W_{\lambda}(\theta) = R(\lambda)
$$

W(h)|_(a,b) = 2|_(a,b) +
$$
\sqrt{1-x^2}
$$
 |_(a,b)
\n
$$
\langle G_{\lambda} | W(H) | G_{\lambda} \rangle = 2
$$
\n
$$
\langle G_{\lambda} | W(H) | G_{\lambda} \rangle = \sqrt{1-x^2}
$$
\n
$$
\langle G_{\lambda} | W(H) | G_{\lambda} \rangle = 2
$$
\n
$$
\langle G_{\lambda} | W(H) | G_{\lambda} \rangle = 2
$$
\n
$$
\langle G_{\lambda} | W(H) | G_{\lambda} \rangle = 2
$$
\n
$$
\langle G_{\lambda} | W(H) | G_{\lambda} \rangle = 2
$$
\n
$$
\langle G_{\lambda} | W(H) | G_{\lambda} \rangle = 2
$$
\n
$$
\langle G_{\lambda} | W(H) | G_{\lambda} \rangle = 2
$$
\n
$$
\langle G_{\lambda} | W(H) | G_{\lambda} \rangle = 2
$$
\n
$$
\langle G_{\lambda} | W(H) | G_{\lambda} \rangle = 2
$$
\n
$$
\langle G_{\lambda} | W(H) | G_{\lambda} \rangle = 2
$$
\n
$$
\langle G_{\lambda} | W(H) | G_{\lambda} \rangle = 2
$$
\n
$$
\langle G_{\lambda} | W(H) | G_{\lambda} \rangle = 2
$$
\n
$$
\langle G_{\lambda} | W(H) | G_{\lambda} \rangle = 2
$$
\n
$$
\langle G_{\lambda} | W(H) | G_{\lambda} \rangle = 2
$$
\n
$$
\langle G_{\lambda} | W(H) | G_{\lambda} \rangle = 2
$$
\n
$$
\langle G_{\lambda} | W(H) | G_{\lambda} \rangle = 2
$$
\n
$$
\langle G_{\lambda} | W(H) | G_{\lambda} \rangle = 2
$$
\n
$$
\langle G_{\lambda} | W(H) | G_{\lambda} \rangle = 2
$$
\n
$$
\langle G_{\lambda} | W(H) | G_{\lambda} \rangle = 2
$$
\n
$$
\langle G_{\lambda} | W(H) | G_{\lambda} \rangle = 2
$$
\n
$$
\langle G_{\lambda} | W(H) | G_{\lambda} \rangle = 2
$$
\n
$$
\langle G_{\lambda} | W(H) | G_{\lambda} \rangle = 2
$$
\

 $\bar{\infty}$

Key conditions

 $W(h)$ $(n) = 2 | (n) + \sqrt{2^{n}} | h^{2} \rangle$

 $\langle G_{\lambda} | W(H) | G_{\lambda} \rangle = \lambda$ $\langle G_{\lambda} | W(H)^2 | G_{\lambda} \rangle = 1$

Let's recall what we did last time...

$$
\widehat{\bigcup_{U(H)=Z_a\otimes H+X_a\otimes \sqrt{1-H^2.}}}
$$

This is just one viable example of $W(H)$. But now we can play with other possibilities! $U(h)^2 = 1$
 $U(h)^2 = 1$

But we are still not done yet, because we need to figure out how to ensure $\langle G_{\lambda} | W(H)^2 | G_{\lambda} \rangle = 1.$

A Trick

We can simply add one more qubit and replace the $U(H)$ by controlled- $U(H)$ and its inverse, to implement $W(H)$.

(Using II) Enst to core up via,
$$
U(h)
$$
 s.t.
\n
$$
F(Ath)
$$
 |)
$$
U(h) |G_{00}| \lambda \lambda_{s} = \lambda |G_{00}| \lambda \lambda_{s} + |G_{00}^{\perp} \lambda_{00}|
$$
\n
$$
Aos \text{Strab}(s) + bros \text{d} \text{trab}(s) + bros \text{d} \text{trab}(s) + 1 \text{trab}(s) +
$$

Qubitization: Block-encoding framework

No longer a single-qubit operator. Problem?

No! We are always living in the λ -subspace, in which $|G_\lambda\rangle = |G\rangle_a |\lambda\rangle$ and $|G_\lambda^\perp\rangle$ forms a "qubit." By applying $Z_a(\phi)$ such that $Z_a(\phi) |G\rangle_a = e^{i\phi} |G\rangle_a$ and $Z_a(\phi) |G^{\perp}\rangle_a = |G^{\perp}\rangle_a$

(for a fixed λ), we can implement the desired operation.

Side remark

Let's talk about the implementation of $Z_a(\phi)$ such that $Z_a(\phi)$ $|G\rangle_a = e^{i\phi}|G\rangle_a$ and $Z_{a}(\phi) | G^{\perp}\rangle_{a} = | G^{\perp}\rangle_{a}$ $V|1...|_{\alpha} = |G|_{\alpha} \iff |1...|_{\alpha} = V^{\dagger}|G|_{\alpha}$ 1) V^{\dagger}

2) Tottel garte: $||...|_{q} |0\rangle_{q1} \longrightarrow$ $||...|_{q} |0\rangle_{q1}$
 $||...||_{q} |0\rangle_{q1}$ $||...||_{q} |1\rangle_{q1}$ $||1\rangle_{q1}$
 $||1\rangle_{q1}$ $||1\rangle_{q1}$ $||1\rangle_{q1}$ 3) Phase on $q|_4$ and q Tottoii⁻¹ 5) V

Qubitization: Block-encoding framework

 $\mathsf{Cost} \approx \mathsf{Cost}$ of $W\!(H) \times \mathsf{Degree}$ of the polynomial

